

MINISTERO DELL'ISTRUZIONE E DEL MERITO

ISTITUTO DI ISTRUZIONE SECONDARIA "DANIELE CRESPI" Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011

Via G. Carducci 4 – 21052 BUSTO ARSIZIO (VA) Tel. 0331 633256 - Fax 0331 674770

www.liceocrespi.edu.it *E-mail: comunicazioni@liceocrespi.it*C.F. 81009350125 – Cod.Min. VAIS02700D

Ministero dell'istruzione, dell'Università e della Ricerca Dipartimento per la Programmazione Direzione Generale per interventi in materia di edilizia scolastica, per la gestione dei fondi strutturali per l'istruzione e per l'innovazione digitale Ufficio IV

PER LA SCUOLA - COMPETENZE E AMBIENTI PER L'APPRENDIMENTO (FSE-FESR)

Classe 3 DSU A.S. 2022-2023

prof. Alberto Rossi

Pacchetto di lavoro estivo di FISICA

Gli alunni con **debito** svolgeranno tutti gli esercizi entro agosto, e consegneranno il lavoro il giorno della prova scritta.

Gli alunni con **consolidamento** svolgeranno tutti gli esercizi, e consegneranno il lavoro all'insegnante al rientro a scuola. In caso di mancato svolgimento o di svolgimento parziale o non accurato è prevista una verifica scritta sulle parti non consolidate, il cui risultato costituirà il primo voto del nuovo anno scolastico.

Gli alunni che hanno riportato valutazione 6 svolgeranno metà degli esercizi. Quelli che hanno avuto valutazione 7 o superiore svolgeranno il 25% degli esercizi. Si raccomanda in particolare di concentrarsi sugli argomenti sui quali si ritiene di dovere consolidare la propria preparazione.

Indicazioni per il recupero di FISICA

Il lavoro estivo è finalizzato al recupero e al consolidamento degli argomenti studiati nel corso dell'anno; pertanto deve essere svolto con <u>continuità e gradualità</u>, evitando di concentrare tutto in poco tempo.

Per ogni argomento:

- rivedere la teoria sul testo, con riferimento al programma svolto;
- eseguire <u>nell'ordine</u> tutti gli esercizi sotto elencati (i disegni devono essere ricopiati e, comunque, per tutti i problemi è opportuno rappresentare graficamente la situazione descritta).

Quesiti e problemi

Grandezze fisiche e unità di misura

- 1) Che cosa si intende per grandezza fondamentale? E per grandezza derivata? Fai almeno tre esempi di grandezze fondamentali e (attingendo eventualmente anche alla cinematica e alla dinamica) almeno tre esempi di grandezze derivate. Indica le loro unità di misura nel Sistema Internazionale.
- 2) Completa la seguente tabella con riferimento alle grandezze fondamentali e unità di misura del sistema internazionale.

Grandezza	Unità di misura	Simbolo unità di misura
		m
tempo		
	kg	
		К

3) Scrivi i valori delle seguenti grandezze nelle unità di misura del Sistema Internazionale:

a) 540 mg	b) 30 giorni
c) 0,0074 mm ²	d) 3,4·10 ⁻³ g/mm ³
e) 84 ml	f) 2,0 anni
g) 0,00056 cm ²	h) 2,3·10 ⁻³ mg/cm ³
i) 2,3·10 ⁻³ mm ³	I) 3,3·10 ⁴ km ²
m) 7,6·10 ⁻² km ³	n) 7,6·10³ cm²

- 4) Definisci la densità. Ricava da tale definizione le formule che esprimono, nota la densità d di una sostanza
 - a. la massa m di un corpo di volume V composto da tale sostanza;
 - b. il volume V di una certa massa m di tale sostanza.
- 5) L'olio di oliva prodotto da un'azienda agricola ha una densità di 0,92 kg/L e costa 6 €/L.
 - a. Quale massa di olio si può acquistare con 100 euro?
 - b. Qual è il volume di tale massa di olio?

[16,7 L; 15,3 kg]

- 6) Si stima che in una manifestazione la concentrazione della folla sia di circa 4 persone per ogni metro quadrato:
 - a. Stima il numero di partecipanti alla manifestazione che riempiono una piazza circolare di raggio 70 m.
 - b. Stima il lato di una superficie quadrata che può ospitare un milione di persone.

[circa 30 mila; circa 350 m]

7) Scrivi i valori delle seguenti grandezze nelle unità di misura del sistema internazionale e utilizzando la notazione scientifica: a) 30 mL b) 20 ore c) 0,056 cm³ d) 2,7·g/cm³

[1mL=1cm³ ... perché? 3,0·10-5 m³; 7,2·104 s; 5,6·10-8 m³; 2,7·10³ kg/m³]

- 8) Il ferro ha una densità di 7,86 g/cm³.
 - a. Determina la massa di un corpo di ferro di volume 0,18 dm3.
 - b. Determina il volume di un corpo di ferro di massa 25 kg

[1,4 kg; 3,2 dm³]

- 9) Un rubinetto gocciola in modo regolare. Si misura il tempo necessario affinché dal rubinetto cadano 60 gocce; tale tempo vale 32 s. Si misura quindi il volume di acqua raccolta in un cilindro graduato in 10 minuti; tale volume risulta essere 290 mL [1mL=1cm³ ... perché?].
 - a) Quante gocce cadono in 10 minuti?
 - b) Qual è il volume di una goccia d'acqua?
 - c) Quanti litri di acqua si sprecano se il rubinetto gocciola per una settimana intera?

 $[n_{10} = 1125 \text{ (rispettando le cifre significative } n_{10} = 1,1\cdot10^3); V_G = 0,26 \text{ mL}; V_{spr} = 292 \text{ L}]$

- 10) a) Cosa si intende per ordine di grandezza?
 - b) Determina l'ordine di grandezza del volume d'aria, espresso in litri, contenuto nella tua aula scolastica, dopo avere fatto opportune stime delle sue dimensioni (lunghezza, larghezza e altezza).
- [a) b) Ipotizzando dimensioni di 7 m, 5 m, 4 m abbiamo V=140 m 3 = 1,4·10 5 L. L'odg del volume è 10 5 L]
- 11) a) Assimilando il Lago Maggiore a una grande piscina di lunghezza 50 km, larghezza 4 km e profondità 200 m, determina l'ordine di grandezza del volume d'acqua in esso contenuto, espresso il litri.
 - b) Assumendo che il volume di una goccia d'acqua sia 0,25 mL, determina l'ordine di grandezza del numero di gocce d'acqua contenute nel Lago Maggiore].
 - a) Quante gocce cadono in 10 minuti?
 - b) Qual è il volume di una goccia d'acqua?
 - c) Quanti litri di acqua si sprecano se il rubinetto gocciola per una settimana intera?

[V= $4 \cdot 10^{13}$ L (l'odg è 10^{13} L); n= $1.6 \cdot 10^{17}$ (l'odg è 10^{17})]

La misura

1) Scrivi il risultato delle temperature (in °C) misurate con i termometri qui rappresentati (comprensivo di incertezza). Motiva brevemente la scelta.

- 2) Misurando ripetutamente il tempo impiegato da un pendolo per compiere 10 oscillazioni complete si sono ottenute le seguenti misure, espresse in secondi: 15,12 15,39 14,81 15,22 14,99. Determina il valore medio del periodo del pendolo, l'errore assoluto (come semidispersione) e l'errore relativo percentuale di tale misura [T = (1,51±0,03) s. L'incertezza percentuale è del 2%]
- 3) Misurando ripetutamente il tempo di caduta di un corpo da una certa quota, si ottengono i seguenti risultati, espressi in secondi: 0,65 0,62, 0,59 0,49 0,64 0,61.
 Dopo avere scartato il dato che ritieni inattendibile (spiega perché), calcola il valore medio, la semidispersione ed esprimi il risultato della misura. Calcola inoltre l'errore relativo percentuale.
- 4) La misura della lunghezza di un corpo viene effettuata con un'incertezza relativa percentuale del 3%. Se il valore della misura è 20,0 cm , qual è l'incertezza assoluta? (0,6 cm)
- 5) Quale delle seguenti misure ha la minore incertezza assoluta? E la minore incertezza percentuale?

$$L_1$$
= (1312±2) km L_2 = (45,1±0,3) cm L_3 = (1,57±0,03) m

[L₂ ha la minore incertezza assoluta; L₁ ha la minore incertezza percentuale; le risposte vanno motivate...]

- 6) Un corpo metallico a forma di parallelepipedo ha spigoli a=(4,3±0,1) cm, b=(5,3±0,1) cm e c=(2,1±0,1) cm. La sua massa è m=(132±2)g.

 Determina:
 - a) Il volume del corpo e la sua incertezza;
 - b) La densità del corpo e la sua incertezza.

 $[(48\pm4)\text{cm}^3; (2,8\pm0,3)\text{g/cm}^3]$

- 7) Per misurare la densità di un solido lo si immerge completamente in un cilindro graduato, che inizialmente contiene (30 ± 1) mL di acqua. Il livello dell'acqua dopo l'immersione indica il valore di (55 ± 1) mL. La massa del solido è (122±2)g Determina:
 - a) Il volume del solido e la sua incertezza;
 - b) La densità del solido e la sua incertezza.

[(25±2)cm³; (4,9±0,5)g/cm³]

- 8) Per misurare la densità di un liquido:
 - 1) si misura la massa di un cilindro graduato vuoto, che risulta essere (40±1)g;
 - 2) si versa del liquido nel cilindro; il volume del liquido risulta essere (48±1)cm³;
 - 3) si misura la massa del cilindro graduato pieno, che risulta essere (77±1)g Determina:
 - a) la massa del liquido e la sua incertezza;
 - b) la densità del liquido e la sua incertezza.

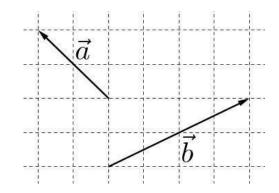
[(37±2)g; (0,77±0,06)g/cm³]

9) Un corpo si muove su una linea retta.

Misurando lo spazio s complessivamente percorso in funzione del tempo impiegato t si ottengono i seguenti risultati:

- a) verifica che s è direttamente proporzionale a t
- b) determina la costante di proporzionalità e la sua incertezza
- c) fornisci una rappresentazione grafica dei dati e traccia la semiretta uscente per l'origine che meglio li interpreta.
- d) determina per lettura grafica la pendenza di tale retta e confronta il valore ottenuto con quello determinato al punto b.

t(s)	s(m)	
0	0	///
0,23	0,68	
0,32	0,92	
0,45	1,32	
0,56	1,63	


[... b) (2,92±0,04)m/s ...]

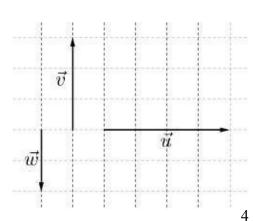
Vettori (il carattere grassetto sottolineato indica un vettore in alternativa alla freccia sopra al simbolo)

- Le grandezze fisiche si possono classificare come scalari o vettoriali. Cosa significa?
 Fai degli esempi.
- 2) Illustra, attraverso opportuni esempi grafici, in cosa consiste la somma tra due vettori, la moltiplicazione di un vettore per uno scalare positivo o negativo e la differenza tra due vettori.
- 3) Cosa significa scomporre un vettore lungo due direzioni date? Fai degli esempi.
- 4) Riporta sul foglio a quadretti i vettori rappresentati in figura e determina graficamente i vettori:

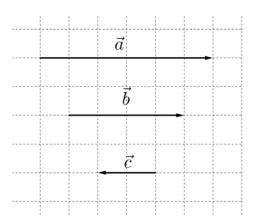
$$\underline{\mathbf{s}} = \underline{\mathbf{a}} + \underline{\mathbf{b}}$$
 $\underline{\mathbf{v}} = 2 \underline{\mathbf{a}}$ $\underline{\mathbf{w}} = -1.5 \underline{\mathbf{b}}$

$$\underline{\mathbf{d}} = \underline{\mathbf{a}} - \underline{\mathbf{b}}$$
 $\underline{\mathbf{e}} = \underline{\mathbf{b}} - \underline{\mathbf{a}}$ $\underline{\mathbf{f}} = \underline{\mathbf{b}} - 2 \underline{\mathbf{a}}$

5) Riporta sul foglio a quadretti i vettori <u>u</u>, <u>v</u> e <u>w</u> di modulo u=4, v=3 e w=2; costruisci quindi i seguenti vettori e determina il loro moduli:


$$\underline{\mathbf{s}} = \underline{\mathbf{u}} + \underline{\mathbf{v}}$$

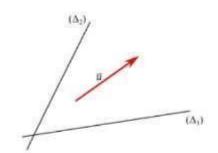
$$\underline{\mathbf{t}} = \underline{\mathbf{u}} + \underline{\mathbf{w}}$$


$$\underline{\mathbf{a}} = \underline{\mathbf{v}} + \underline{\mathbf{w}}$$

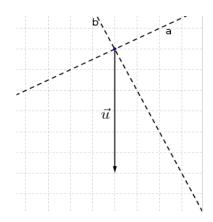
$$\underline{\mathbf{d}} = \underline{\mathbf{u}} - \underline{\mathbf{v}}$$

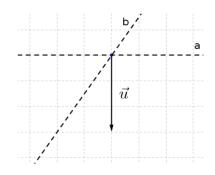
$$\underline{\mathbf{f}} = \underline{\mathbf{v}} - \underline{\mathbf{w}}$$

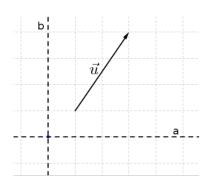
6) Riporta sul foglio a quadretti vettori <u>a</u>, <u>b</u> e <u>c</u> (di modulo rispettivamente a=60, b=40 e c=20); costruisci quindi i seguenti vettori e determina il loro modulo (per evitare parallelogrammi degeneri, conviene usare il metodo punta-coda):


$$\underline{\mathbf{s}} = \underline{\mathbf{a}} + \underline{\mathbf{b}}$$

$$\underline{\mathbf{d}} = \underline{\mathbf{a}} - \underline{\mathbf{b}}$$


$$\underline{\mathbf{t}} = \underline{\mathbf{a}} + \underline{\mathbf{c}}$$


$$\mathbf{f} = \mathbf{b} + 5 \mathbf{c}$$


7) Scomponi il vettore <u>u</u> rappresentato a fianco nelle due direzioni date.

- 8) Determina il vettore somma di due vettori aventi lo stesso modulo nel caso in cui:
 - a) I due vettori hanno medesima direzione e verso
 - b) I due vettori formano un angolo di 120°
- 9) Determina le componenti orizzontale e verticale di un vettore (di modulo 8,0 m/s) che forma un angolo di 30° con l'orizzontale.
- 10) Scomponi il vettore <u>u</u> nelle direzioni a e b nei tre casi sotto rappresentati:

Forze, equilibrio

1) Un corpo sulla Terra pesa 72,4 N mentre su un pianeta sconosciuto pesa 45,6 N. Determina il valore della costante di gravità g su quel pianeta.

(6,2 N/kg)

2) La costante elastica di una molla è 8,5 N/m. Appendendo un corpo alla molla, questa si allunga di 4,5 cm. Quanto valgono il peso e la massa del corpo? (Ricorda che la costante *g*, accelerazione di gravità, vale 9,81 m/s²) [0,38 N; 39 g]

- MMM
- 3) A una molla di costante elastica 150 N/m, disposta verticalmente, viene appeso un cilindro di massa pari a 400 g.
 - a. Disegna tutte le forze che agiscono sulla massa nel sistema in figura
 - b. Determina la lunghezza finale della molla, nel caso in cui la sua lunghezza a riposo sia di 27,4 cm.
 [30 cm]

4) Una molla A di costante elastica 75 N/m è passata dalla lunghezza di 69 cm a quella di 76 cm. Dopo aver determinata la forza applicata alla molla:

molla A		
<i>F</i> (N)	ΔL (cm)	
3		
12		
15		

- a) completa la tabella qui a fianco
- b) rappresenta la relazione forza-allungamento della molla A nel piano cartesiano (F, ΔL);
- c) aggiungi nello stesso piano (senza effettuare calcoli) la retta relativa ad una molla B meno rigida, motivando la scelta.

[5,25 N]

- 5) Una scatola piena di libri ha una massa complessiva di 45 kg e poggia su un pavimento di marmo. Il coefficiente d'attrito radente statico tra scatola e pavimento è 0,36. Calcola la minima forza orizzontale che deve essere applicata alla scatola per porla in movimento.
- 6) L'intensità della forza di attrito che bisogna vincere per spostare una cassa di 20 kg lungo un pavimento è 40 N. Determina il coefficiente di attrito statico. (0,2)
- 7) Calcola il modulo della forza necessaria per equilibrare un corpo di peso 6,0 N, appoggiato su un piano inclinato, privo d'attrito, alto 0,9 m e lungo 1,7 m. [3,2 N]
- 8) Una scatola avente una massa di 5.0 kg è posta su un piano inclinato di 30°. Supponendo che tra scatola e piano ci sia un coefficiente di attrito pari a 0,35, determina se la scatola è in equilibrio.
- 9) Un corpo dal peso di 7,8 N si trova all'equilibrio su di un piano inclinato di 30° rispetto all'orizzontale, senza attrito. In un disegno rappresenta tutte le forze in gioco. Determina la forza equilibrante e la reazione vincolare. (3,9 N; 6,8 N)
- 10) Per tenere in equilibrio un carrello su un piano inclinato alto 1,7 m e lungo 3,5 m è necessaria una forza di 83 N. Qual è la massa del carrello? (17,4 kg)

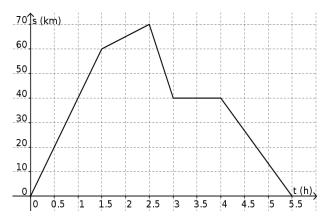
Velocità e moto rettilineo uniforme

- 1) Nel contesto del moto rettilineo:
- a. Cosa si intende per velocità media?
- b. Ricava da tale definizione le formule che esprimono, nota la velocità media, lo spazio percorso Δs da un corpo in un certo intervallo di tempo Δt e il tempo Δt impiegato per percorrere una certa distanza Δs .

2) Completa, motivando la risposta e utilizzando, ove pertinente, la notazione scientifica:

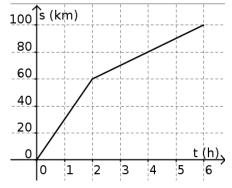
18 m/s =	km/h	20 km/h =	m/s
12 mm/min =	m/s	36 km/s =	km/h
12 cm/h =	m/s	30 km/min =	m/s

- 3) Un ciclista si muove su una strada rettilinea alla velocità di 25 km/h.
- a. In quanti minuti percorre 15 km?
- b. Quanto spazio percorre in 2 ore e 20 minuti?

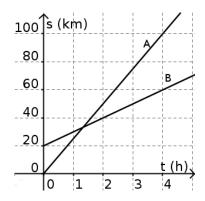

[t=36 minuti; s=58 km]

- 4) Un ciclista percorre una strada rettilinea alla velocità di 7,5 m/s per un'ora, e alla velocità di 5,0 m/s nelle due ore successive.
- a. Quanto spazio percorre complessivamente?
- b. Determina la velocità media del ciclista sull'intero percorso.

 $[\Delta S_1 = 27 \text{km}; \Delta S_2 = 36 \text{km}; \Delta S = 63 \text{km}; v_m = 21 \text{km/h o } v_m = 5.8 \text{m/s}]$


5) Un'auto si muove su una strada rettilinea. Il suo moto è rappresentato a fianco. Determina la velocità dell'auto (con segno) nei diversi tratti. Descrivi verbalmente il suo moto (es: nella prima ora e mezza l'auto percorre ... km alla velocità di;)

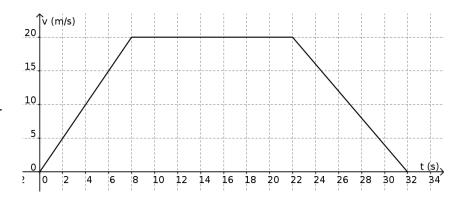
[40km/h; 10km/h; -60km/h; 0; 27km/h]



6) Descrivi il moto del ciclista rappresentato a fianco. Determina in particolare la sua velocità nelle prime due ore, nelle quattro ore successive e la velocità media sull'intero percorso.

[v_{0-2} =30km/h; v_{2-6} =10km/h; v_{m} =17km/h perché complessivamente percorre 100 km in 6 ore]

- 7) Scrivi la legge oraria del moto uniforme. Scrivi la legge del moto in ciascuna delle seguenti situazioni, facendo anche una rappresentazione grafica:
- a) corpo che al tempo t=0 si trova nella posizione s=8,0 m e che si allontana dall'origine del sistema di riferimento alla velocità di 3,5 m/s;
- b) corpo che al tempo t=0 si trova nella posizione s= 30 m e che si avvicina all'origine del sistema di riferimento alla velocità di 6,0 m/s.
- 8) Il grafico a fianco rappresenta le leggi del moto di due ciclisti.
- a) Determina, utilizzando il grafico, la posizione iniziale e la velocità di ciascun ciclista;
- b) Descrivi la situazione;
- c) Scrivi le leggi del moto di ciascuno dei ciclisti;


- d) Determina per via grafica e per via algebrica quando e dove il ciclista A supera il ciclista B. Verifica la coerenza dei risultati ottenuti.
- [a) s_{0A} =0km v_A =25km/h s_{0B} =20km v_B =10km/h
- b) $s_A = 25t s_B = 20 + 10t$
- c) si incontrano al tempo t=1,33h (ciòè 1h20'), nella posizione s=33km]

Accelerazione e moto uniformemente accelerato

- 1) Nel contesto del moto rettilineo:
- a. Cosa si intende per accelerazione media? Qual è la sua unità di misura nel SI?
- b. Ricava da tale definizione le formule che esprimono, nota l'accelerazione media, variazione di velocità Δv di un corpo in un certo intervallo di tempo Δt impiegato affinché la velocità abbia una variazione Δv .
- 2) Un corpo in moto rettilineo ha un'accelerazione di 2,5 m/s². Di quanto varia la sua velocità in 2,4 s? In quanto tempo la sua velocità varia da 6,0 m/s a 15,0 m/s?

[6,0 m/s; 3,6 s]

- 3) Cosa si intende per moto rettilineo uniformemente accelerato? Scrivi la legge della velocità nel moto rettilineo uniformemente accelerato, indicando il significato dei termini. Specifica tale legge e fai una rappresentazione grafica (da t=0 a t=6 s) nei seguenti casi:
 - al tempo t=0 il corpo è fermo; la sua accelerazione è di 1,8 m/s²;
 - al tempo t=0 il corpo si muove con velocità di 9,0 m/s e la sua accelerazione vale
 -1,5 m/s² [rappresenta la situazione fino a quando il corpo si ferma]
 - al tempo t=0 il corpo si muove alla velocità di 3,0 m/s e la sua accelerazione vale 1,2 m/s²
- 4) Come, dal grafico velocità-tempo, si possono ricavare informazioni sullo spazio percorso da un corpo in un certo intervallo di tempo? Quanto spazio percorrono i corpi dell'esercizio precedente in 6,0 s?
- 5) Osserva il grafico a fianco, relativo al moto di un'auto.
- a) Descrivi il moto
- b) Determina l'accelerazione nei diversi tratti
- c) Disegna il grafico accelerazione tempo
- d) Determina lo spazio percorso dall'auto nell'intero tratto.
- e) Determina la sua velocità media nell'intero percorso.

6) Scrivi la legge oraria (cioè della posizione in funzione del tempo) di un moto uniformemente accelerato e spiega il significato dei vari termini.

7) Un corpo, inizialmente fermo, viene lasciato libero di muoversi lungo un piano inclinato. Nella tabella a fianco sono riportate le misure sperimentali effettuate dello spazio percorso s in funzione del tempo impiegato t.

Verifica che si tratta di un moto uniformemente accelerato e determina l'accelerazione e la sua incertezza.

 $[a=(4,9\pm0,2)m/s^2]$

t (s)	s (m)	
0,28	20	
0,41	40	
0,50	60	
0,57	80	

- 8) Un corpo viene lasciato libero di cadere dalla quota di 16 m. Dopo avere fissato un opportuno sistema di riferimento determina, trascurando la resistenza dell'aria:
- a) in quanto tempo arriva al suolo;
- b) con quale velocità arriva al suolo;
- c) quanto tempo impiega per compiere la prima metà del percorso.

[1,8 s; 18 m/s; 1,3 s]

- 9) Un corpo viene lanciato verso l'alto, e raggiunge la quota massima in 1,5 s. Dopo aver fissato un opportuno sistema di riferimento, determina, trascurando la resistenza dell'aria:
- a) determina la velocità con cui è stato lanciato;
- b) determina la quota massima raggiunta;
- c) rappresenta in un grafico la velocità del sasso in funzione del tempo.

[15 m/s; 11 m]

- 10) Un sasso, inizialmente fermo, viene lasciato cadere e arriva a terra in 1,6 s. Trascurando la resistenza dell'aria determina la quota iniziale del sasso e la velocità con cui arriva al suolo, espressa in km/h. [13 m; 56 km/h]
- 11) Un sasso, inizialmente fermo, viene lasciato libero di cadere da una scogliera a picco sul mare. Inizialmente il sasso si trova a quota 80 m sul livello del mare. Trascurando la resistenza dell'aria, in quanto tempo il sasso raggiunge il mare? Con quale velocità?

[4,0 s; 39 m/s]

- 12) Un fuoco d'artificio viene lanciato (lungo la verticale) con velocità di 40 m/s. In quanto tempo raggiunge la quota massima? Determina tale quota. [4,1 s; 82 m]
- 13) L'auto A passa da 0 a 108 km/h in 10,0 s. L'auto B passa da 0 a 108 km/h lungo un percorso di 120 m. In entrambi i casi il moto è uniformemente accelerato. Quale delle due auto ha l'accelerazione maggiore? $[a_A = 3,00 \text{ m/s}^2 \text{ a}_B = 3,75 \text{ m/s}^2 \text{ quindi } a_B > a_A]$
- 14) Un'auto, che si muove alla velocità di 54 km/h, frena e si ferma in 25 m. Determina la decelerazione. In quanti metri si ferma un'auto di velocità iniziale doppia, con la stessa decelerazione? [4,5 m/s²; 100 m]
- 15) Un'auto A passa da 0 a 72km/h in 8,0 s. Determina l'accelerazione e lo spazio percorso. Quanto spazio percorre l'auto in metà del tempo? In quanto tempo l'auto percorre metà dello spazio?

[2,5 m/s²; 80 m; 20 m; 5,7 s]

LIBRI e dintorni

Vi è una gran quantità di libri (o riviste o siti) di divulgazione, di buona qualità, simpatici, interessanti e non pesanti. Vi invitiamo a dedicarvi del tempo, seguendo i vostri interessi. Esempi:

http://scienzapertutti.lnf.infn.it/percorsi-divulgativi https://phet.colorado.edu/ (simulazioni) http://www.donnenellascienza.it/

Busto Arsizio, 8 giugno 2023

Il docente Alberto Rossi